Non-Exponential Two-Body Beta Decay of Stored Hydrogen-Like Ions

Yuri A. Litvinov

Joint HEPD - TPD seminar PNPI, Gatchina, Russia September 24, 2009

Max-Planck-Institut für Kernphysik, Heidelberg

Beta-decay on the Chart of Nuclides

Two-body beta decay of stored and cooled highly-charged ions

Production, storage and cooling of HCI at GSI

ESR : $E_{max} = 420 \text{ MeV/u}$, 10 Tm; e⁻, stochastic cooling

ESR: B. Franzke, NIM B 24/25 (1987) 18

Stochastic cooling: F. Nolden et al., NIM B 532 (2004) 329 Electron cooling: M. Steck et al., NIM B 532 (2004) 357

Electron Cooling

momentum exchange with 'cold', collinear e- beam. The ions get the sharp velocity of the electrons, small size and divergence

SMS: Broad Band Frequency Spectra

Nuclear Decays of Stored Single Atoms

Time-resolved SMS is a perfect tool to study dynamical processes in the ESR

Nuclear electron capture, β +, β - and bound- β decays were observed

Yu.A. Litvinov et al., NP A 734 (2004) 473 Yu.A. Litvinov et al., NP A 756 (2005) 3

Decay schemes H-like ions; g.s. \rightarrow g.s.; no third particle

EC in Hydrogen-like Ions

Expectations:

 $\lambda_{\text{EC}}(\text{H-like})/\lambda_{\text{EC}}(\text{He-like}) \approx 0.5$

¹⁴⁰**Pr**

¹⁴²Pm

 $\lambda_{\text{EC}}(\text{H-like})/\lambda_{\text{EC}}(\text{He-like}) = 1.49(8)$

 $\lambda_{\text{EC}}(\text{H-like})/\lambda_{\text{EC}}(\text{He-like}) = 1.44(6)$

Yu.A. Litvinov et al., Phys. Rev. Lett. 99 (2007) 262501

N. Winckler et al., Phys. Lett. B579 (2009) 36

Electron Capture in Hydrogen-like Ions

Gamow-Teller transition $1^+ \rightarrow 0^+$

Z. Patyk et al., Phys. Rev. C 77 (2008) 014306 A. Ivanov et al., Phys. Rev. C 78 (2008) 025503 Why we have to restrict onto 3 injected ions at maximum ? The variance of the amplitude gets larger than the step $3\rightarrow4$ ions

Evaluation of amplitude distributions corresponding to 1,2,3-particles

Nicolas Winckler

Examples of Measured Time-Frequency Traces

Revolution frequency - 59260 [kHz]

Revolution frequency -

Continuous observation

Parent/daughter correlation

Well-defined creation and decay time

Detection of ALL EC decays

Delay between decay and "appearance" due to cooling No third particle involved

¹⁴⁰Pr : 2650 EC decays from 7102 injections

Yu.A. Litvinov et al., PL B 664 (2008) 162

¹⁴²Pm: 2740 EC decays from 7011 injections

Yu.A. Litvinov et al., PL B 664 (2008) 162

¹⁴²Pm: zoom on the first 33 s after injection

Yu.A. Litvinov et al., PL B 664 (2008) 162

Synopsis (¹⁴⁰Pr & ¹⁴²Pm)

mass	<mark>ω(1/s)</mark>	Period (s)	Amplitude	<mark>φ(rad</mark>)	
140	0.890(10)	7.06(8)	0.18(3)	0.4(4)	
142	0.885(27)	7.10(22)	0.23(4)	- 1.6(4)	

Yu.A. Litvinov et al., PL B 664 (2008) 162

Straightforward Questions

1. Are the periodic modulations real ?

2. Can <u>coherence</u> be preserved over <u>macroscopic</u> times for a confined motion, interacting ions and at <u>continuous observation</u> ?

3. If "yes", what could be the origin ?

EC decay of implanted ¹⁴²Pm &¹⁸⁰Re

EC-decay vs. Beta-decay for 142Pm

Quantum Beats Phenomenon

Coherent excitation of an electron in two quantum states, separated by ΔE at time t_o

The phase correlation imprinted at t_0 is preserved until the emission of the photons at time t

Fig. 24. Zero-field oscillations between the 1s $3p {}^{3}P_{1}$ and 1s $3p {}^{3}P_{2}$ states in He I (659 MHz), Wittmann [248]. The oscillations are superimposed on the exponential decay of the 1s $3p {}^{3}P$ term (96 ns). To record this decay curve about 10 hours beam time (a few μA) and more than 20 carbon foils were needed.

Chow et al., PR A11(1975) 1380

"Classical" Quantum Beats vs. EC-decay in the ESR

Quantum beats

- two initial states with different quantum numbers
- excited atom moves free in space
 - observation time <u>nanoseconds microseconds</u>

<u>EC - decay of H-like ions stored in a ring</u>

- parent atom created in <u>one initial state</u>
 - moves <u>confined</u> by electromagnetic forces
 - <u>interacts</u> with e⁻ of the cooler, atoms, beam pipe..
- observation time <u>some 10 seconds</u>

"Quantum Beats" from the Hyperfine States Coherent excitation of the 1s hyperfine states F = 1/2, F = 3/2Beat period $T = h/\Delta E$; for $\Delta E \approx 1 \text{ eV} \rightarrow T \approx 10^{-15} \text{ s}$

 μ = +2.7812 μ_N (calc.)

Decay can occur only from the F=1/2 (ground) state

Yu.A. Litvinov et al., PRL 99 (2007) 262501

Periodic spin flip to "sterile" F=3/2 ? $\rightarrow \lambda_{FC}$ reduced

Periodic transfer from F = 1/2 to "sterile" F = 3/2 ?

1. Decay constants for H-like ¹⁴⁰Pr and ¹⁴²Pm should get smaller than expected. \rightarrow NO

2. Statistical population in these states after t \approx max [1/ λ_{flip} , 1/ $\lambda_{dec.}$]

3. Phase matching over many days of beam time?

Beats due to neutrino being not a mass eigenstate?

The electron neutrino appears as coherent superposition of mass eigenstates

The <u>recoils</u> appear as <u>coherent superpositions</u> of states <u>entangled</u> with the electron neutrino mass eigenstates by momentum- and energy conservation

Oscillation period T proportional to nuclear mass M?

New Experiment

New Experiment on H-like ¹²²I ions

Experiment: 31.07.2008-18.08.2008

Decay Statistics

Correlations: 10.808 injections ~ 1080 EC-decays Many ions: 5718 injections ~ 5000 EC-decays

Revolution frequency

Exponential Fit

Exponential + Modulation Fit

Sum of All Evaluated EC Decays

Synopsis (140Pr & 142Pm)

mass	ພ <mark>(1/s)</mark>	Period (s)	Amplitude	<mark>φ(rad</mark>)
122(*)	1.036(8)	6.05(4)	0.21(2)	-0.2(2)
140	0.890(10)	7.06(8)	0.18(3)	0.4(4)
142	0.885(27)	7.10(22)	0.23(4)	- 1.6(4)

(*) -!- Preliminary -!-

Outlook

Can the observed effect be a tricky technical artifact? In the preliminary analysis we see two different frequencies In the preliminary analysis we see no modulation in the β^+ - decay channel More experiments are needed.

Can the effect be due to a hypothetical interaction of the bound electron with the surrounding?

- Will be checked by studying the EC decay of He-like ¹⁴²Pm ions (March 2010).

Can the frequency scaling with the nuclear mass be due to an unknown effect that depends on the nuclear mass (magnetic rigidity)

- Will be checked with the same ion type at different velocities (magnetic rigidities)

Can the effect be due to a "neutrino"-driven quantum beat phenomenon?

- Modulation periods scale with the nuclear mass
- Extremely long coherence time

Independent verification at another facility is urgently needed (CSRe ring at IMP/Lanzhou; WITCH setup at ISOLDE/CERN)

Experimental Collaboration

F. Bosch, D. Boutin, C. Brandau, L. Chen, Ch. Dimopoulou, H. Essel, Th. Faestermann, H. Geissel, E. Haettner, M. Hausmann, S. Hess, P. Kienle, Ch. Kozhuharov, R. Knöbel, J. Kurcewicz, S.A. Litvinov, Yu.A. Litvinov, L. Maier, M. Mazzocco, F. Montes, A. Musumarra,
G. Münzenberg, C. Nociforo, F. Nolden, T. Ohtsubo, A. Ozawa, W.R. Plass, A. Prochazka,

R. Reuschl, Ch. Scheidenberger, U. Spillmann, M. Steck, Th. Stöhlker, B. Sun, T. Suzuki, S. Torilov, H. Weick, M. Winkler, N. Winckler, D. Winters, T. Yamaguchi

Hard #1

v_{μ}		ν _τ		v ₁		v ₃	W+	
	Z	W⁺						
			v_{μ}					v ₁
ν _τ		Z	ν ₁					
v ₂			Z		v _e			νμ
					v ₃	ν _τ		W ⁺
w⁻					Z			
						Z	v ₃	
	v ₃	v _e		w⁻		ν _μ		v ₂

Sudoku

Few (1...3) stored parents 1109 EC decays

Few (1..3) stored parents – FFT

f = 0.1709 Hz

Many (10..30) parent ions 4536 EC decays

Many (20..30) stored parents – FFT

Implantation of daughter ions into a lattice: Final state: Neutrino, daughter ion and phonon(s) with energies

Projected wave function:

 $|\psi_{f}|^{2} \sim 1/2 \sin^{2}2\theta \{\cos(\Delta E_{12}t + \phi)] + \cos\left[(\Delta E_{12} + \Delta \alpha_{kl})t + \phi\right)] + \cos\left[\Delta \alpha_{kl}t + \phi\right]\}$

 $\Delta \alpha_{kl} = \alpha_k - \alpha_l$ (depends on phonon level density, lattice site...)

→ could wash-out mono-periodic modulations