Feasibility study for reaction $(p, p'\gamma)$ at Gatchina accelerator S.I. Manaenkov HEPD Scientific Council Gatchina, 2022, December 22

Contents

- Introduction
- Properties of Nucleus-Excitation Amplitudes in Glauber Theory
- Photon Radiation with Excited Nuclei
- Contributions of Spin-Dependent Parts of Hadron-Nucleon Amplitude
- Angular Distribution of Gamma-Quanta
- Experiments with γ -Quanta in the Last Century
- Summary

- Registration of gamma-quantum energy fixes the nucleus energy level with better accuracy than the magnetic spectrometer
- Study of the differential cross section at $t\to 0$ permits to establish the parity P of a natural parity level
- Investigation of the gamma-quantum angular distribution in coincidence with the scattered hadron allows to extract the Glauber amplitudes of nucleus excitation $F_M(q)$ and establish level's quantum numbers J^P ($M = J_z$)
- Knowledge of the amplitudes of nuclear level excitation offers a clearer understanding of nuclear structure than that of differential cross sections
- Measurements of γ -quantum energy spectrum permits to investigate also reactions ${}^{A}X(p,pp)^{(A-1)}Y^*$, ${}^{A}X(p,pn)^{A}X^*$ and ${}^{A}X(p,p\alpha)^{(A-4)}Z^*$ with excited nuclei X^* , Y^* , Z^* in the final state

• Selection Rules for Nuclei with Ground State $J^P = 0^+$ If the hadron-nucleon spin-dependent invariant amplitudes are much smaller than spin-independent amplitude, than the states J^P are exited with $M = J_z$ obeying the relation

$$P(-1)^M = 1$$

Examples. Natural parity level 3^- : $M = \pm 3$, ± 1 . Unnatural parity level 3^+ : $M = \pm 2$, 0. Natural parity level 2^+ : $M = \pm 2$, 0. Even (odd) values of M correponds to P = 1 (P = -1).

- Relation between $F_M(q)$ and $F_{-M}(q)$: $F_{-M}(q) = (-1)^J F_M(q)$ Examples. Unnatural parity level 3^+ : $F_{-2}(q) = -F_2(q)$, $F_{-0}(q) = (-1)^3 F_0(q) \Rightarrow F_0(q) \equiv 0$. It is general property of unnatural parity levels. Natural parity level 2^+ : $F_{-0}(q) = (-1)^2 F_0(q)$, $F_0(q) \neq 0$.
- Asymptotic Behavier of Amplitudes F_M(q) at qR → 0: F_M(q) ~ (qR)^{|M|}. Examples. For 3⁻ level main terms: F_{±1}(q) ~ (qR)¹. For 2⁺ level main term: F₀(q) ~ (qR)⁰ = const. For 3⁺ level main terms: F_{±2}(q) ~ (qR)². 1⁺ level is not excited at high energies at all by spin-independent hadron-nucleon

amplitudes since $F_0(q) \equiv 0$.

Photon Radiation with Excited Nuclei

- State of photon is described by vector spherical harmonics \$\vec{Y}_{JM}^{(\lambda)}\$
 λ = 1 electric type (E) or λ = 0 magnetic type (M). \$\vec{Y}_{JM_1}^{(1)} \cdot \vec{Y}_{JM_2}^{*(1)} = \vec{Y}_{JM_1}^{(0)} \cdot \vec{Y}_{JM_2}^{*(0)}\$
 For transition \$J^P\$ → 0⁺ \lambda\$ = 1 (electric type \$E\$), if \$P = (-1)^J\$ (natural parity level), while \$\lambda\$ = 0 (magnetic type \$M\$), if \$P = -(-1)^J\$ (unnatural parity level).
- Angular distribution of photons emitted in the transition $J^P \to 0^+$ $\mathcal{W}(\theta, \varphi, \vec{q}) = |\vec{\mathcal{F}}|^2 = \left|\sum_M F_M(q) \vec{Y}_{JM}^{(\lambda)}(\theta, \varphi)\right|^2 = \sum \varrho_{M_1 M_2} \vec{Y}_{JM_1}^{(\lambda)}(\theta, \varphi) \cdot \vec{Y}_{JM_2}^{*(\lambda)}(\theta, \varphi),$

where θ is polar and φ is azimuthal angle of photon momentum (Z-axis is along beam, X-axis is parallel to \vec{q}). $\vec{Y}_{JM}^{(\lambda)}(\theta,\varphi) = e^{iM\varphi} \vec{\xi}_{JM}^{(\lambda)}(\theta)$. Example: $3^- \to 0^+$. $F_{-3}(\vec{q}) = -F_3(\vec{q}), F_{-1}(\vec{q}) = -F_1(\vec{q}),$ $\vec{\mathcal{F}}(\theta,\varphi,\vec{q}) = F_3(\vec{q})(\vec{Y}_{33}^{(E)}(\theta,\varphi) - \vec{Y}_{3-3}^{(E)}(\theta,\varphi)) + F_1(\vec{q})(\vec{Y}_{31}^{(E)}(\theta,\varphi) - \vec{Y}_{3-1}^{(E)}(\theta,\varphi)).$ Two complex amplitudes $F_3(q)$ and $F_1(q) \equiv 4$ real function of q. Common phase is unmeasurable, hence 3 function of q can be extracted from data.

Which information contain amplitudes F_M(q) at qR → 0? F_M(q) = i^{M+1}k ∫₀[∞] J_M(qb) ⟨⟨ε_f, P, J, M|Γ(b − s₁, b − s₂, ..., b − s_A)|ε_i, 0⁺⟩⟩bdb, where s_j is transverse part of radius-vector r_j of j-th nucleon in nucleus (1 ≤ j ≤ A), while b is impact vector of beam hadron. Bessel functions J_M(qb) ~ (qb)^{|M|} at q → 0. The larger |M| the more peripherical is contribution to F_M(q) at small q.

S.I. Manaenkov, HEPD Scientific Council, Gatchina, 2022, December 22 p. 4 of 15

Contributions of Spin-Dependent Parts of Hadron-Nucleon Amplitude

Pion-nucleon amplitude: f(q) = a(q²) + b(q²)(σ · n), where n ∝ (k × q) is the unit normal to the hadron-nucleon scattering plane. F_M(q) = F_M^(a)(q) + F_M^(b,a)(q). Linear contributions of πN-amplitude b(q²) to F_M^(b,a). Selection rules for F_M^(b,a)(q): P(-1)^M = -1. Relations between F_M^(b,a)(q) and F_{-M}^(b,a)(q): F_{-M}^(b,a)(q) = -(-1)^JF_M^(b,a)(q). Since different F_M(q) are multiplied by different vector spherical harmonics Y_{JM}^(X) all amplitude moduli and phase differences of F_M(q) can be extracted from data, besides the common phase shift of the amplitudes retains unknown.

• Example:
$$J^P = 3^-$$
. Nonzero $F_M^{(b,a)}(q)$ for $M = 0, \pm 2$.
 $F_{-2}^{(b,a)}(q) = F_2^{(b,a)}(q), F_0^{(b,a)}(q) \neq 0$.
Big amplitudes $F_3^{(a)}(q), F_1^{(a)}(q)$; small amplitudes $F_2^{(b,a)}(q), F_0^{(b,a)}(q)$.
Common phase is unmeasurable, hence 7 function of q can be extracted from data.

Types of extracted form factors for pion scattering in impulse approximation
 F^(a)_M(q) : A_M(q) = ⟨ε_f, P, J, M| Σ^A_{j=1} exp{i(q · r_j)}|ε_i, 0⁺⟩.
 F^(b,a)_M(q) : B_M(q) = ⟨ε_f, P, J, M| Σ^A_{j=1}(σ_j · n) exp{i(q · r_j)}|ε_i, 0⁺⟩, n ∝ (k × q).

Angular Distribution of Gamma-Quanta

• Gamma-Quanta from Transition $2^+ \rightarrow 0^+$

Angular Distribution of Gamma-Quanta

• Gamma-Quanta from Transition $2^+ \rightarrow 0^+$

 $\begin{array}{ll} \mbox{Solid line: } X = (\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{21}^{*(1)})(\varphi = 0), \mbox{ dashed line: } X = (\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{20}^{*(1)})(\varphi = 0), \\ \mbox{ dotted line: } X = (\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{2-1}^{*(1)})(\varphi = 0), \\ \mbox{ dash-dotted line: } X = (\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{2-2}^{*(1)})(\varphi = 0). \end{array}$

HEPD Scientific Council, Gatchina, 2022, December 22 p. 7 of 15

Excitation of 3⁻ (6,13 MeV) level in ¹⁶O by protons; ΔE_γ(Ge(Li))= 10 ÷ 15 KeV Yu.M. Goryachev, V.P. Kanavets, I.V. Kirpichnikov, I.I. Levintov, B.V. Morozov, N.A. Nikiforov, A.S. Starostin (ITEP group), Excitation of nuclear levels in O¹⁶ with high energy protons, Phys. of Atom. Nucl. (Yad. Fiz.) 17 (1973) 910.

Beam energy (GeV)	σ^* , mb
1,0	$7,3\pm1,1$
2,9	$8,5\pm1,4$
6,3	$7,8\pm1,3$

- Radiation of γ-quanta with nuclei excited by high-energy hadrons
 S. I. Manaenkov, Emission of γ-quanta with nuclei excited with high energy hadrons, *JETP Letters* 18 (1973) 535-538.
 S. I. Manaenkov, Excitation of individual levels in ¹⁶O with protons at energy 1 GeV, *JETP Letters* 19 (1974) 593-597.
 S. I. Manaenkov: γ-radiation of nuclei excited with high energy hadrons, *Yad. Fiz.* 20 (1974) 677-689.
 - S. I. Manaenkov: Study of NN amplitude in nucleon-nucleus scattering experiments at high energies, *Yad. Fiz.* **26** (1977) 302-311.

• γ -Quantum Spectrum of ¹⁶O Excited with the 1 GeV Protons

Рис. 2. Спектр γ-излучения, испускаемого LiOH мишенью при облучении протонами с энергией $T_p = 1$ Гэв. Угол наблюдения 178° по отношению к протонному цучку. Энергетическая цена канала анализатора $\Delta E = 20$ кэв

Experiments with γ -Quanta in the Last Century

 J.L. Groves, L.E. Holloway, L.J. Koester, W.-K. Liu, L.J. Nodulman, D.G. Ravenhall, J.H. Smith (Illinois Univ.), Study of the reaction π⁻ +¹² C → π⁻ +¹² C^{*} (4.44 MeV) at 4.5 GeV/c. Phys. Rev. D15 (1977), 47. σ^{*} = 1.70 ± 0.23 mb.

Рис.7. Азимутальное распределение гамма-квантов в реакции ${}^{12}C(\pi,\pi'_{\ell}) {}^{12}C(2^+)$ относительно плоскости реакции при $\rho_{\pi} = 4,5$ Гэв/с; расчет выполнен в приближении одного неупругого соударения; экспериментальные данные – из работы [II].

- Study of reaction $(p, p'\gamma)$ permits to extract from experimental data on nucleus excitation with intermediate energy hadron beam all moduli of amplitudes $F_M(q)$ and phase difference between all pairs of amplitudes. The ground state of target nucleus is to be non-degenerate energy level $(0^+ \text{ or } 0^-)$.
- Angular distribution of photons from transition $J^P \rightarrow 0^+$ or $J^P \rightarrow 0^-$ fixes the total angular momentum of excited level and its parity.
- Behaviour of amplitudes $F_M(q)$ at $q \to 0$ allows to establish the excited level parity.
- Spin-dependent πN amplitude contributes in linear approximation to amplitudes of nucleus excitation $F_M(q)$ for M different from those which are excited with spin-independent πN amplitude.

Extracted Information from Hadron-Nucleus Scattering Data For the pion scattering two types of form factors can be extracted: A_M(q) = ⟨ǫ_f, P, J, M| ∑^A_{j=1} exp{i(q · r_j)}|ǫ_i, 0⁺⟩, B_M(q) = ⟨ǫ_f, P, J, M| ∑^A_{j=1}(σ_j · n) exp{i(q · r_j)}|ǫ_i, 0⁺⟩. For proton beam in addition to A_M(q) three form factors can be obtained: B^(m)_M(q) = ⟨ǫ_f, P, J, M| ∑^A_{j=1}(σ_j)_m exp{i(q · r_j)}|ǫ_i, 0⁺⟩, where m = x, y, z. This gives possibility to test nucleus models more detailed than in lepton scattering, besides long-range correlations (deformation, alpha-clusterization) can be studied.

S.I. Manaenkov, HEPD Scientific Council, Gatchina, 2022, December 22 p. 11 of 15

Proof of Selection Rules

 \hat{O}_z is reflection of the Z-axis $(z_i \to -z_i)$. Since $\hat{O}_z = \hat{P}\hat{R}_z(\pi)$, where \hat{P} is inversion and $\hat{R}_z(\pi)$ is rotation around Z-axis by the angle $\varphi = \pi$, then $\hat{R}_z(\pi) |\epsilon_f, P, J, M\rangle = (-1)^M |\epsilon_f, P, J, M\rangle$ and $\hat{P} |\epsilon_f, P, J, M\rangle = P |\epsilon_f, P, J, M\rangle$, therefore $\hat{O}_z | \epsilon_f, P, J, M \rangle = P(-1)^M | \epsilon_f, P, J, M \rangle$, and $\hat{O}_z | \epsilon_i, 0^+ \rangle = | \epsilon_i, 0^+ \rangle$. Since the profile function $\Gamma = \Gamma((\vec{b} - \vec{s}_1)^2, (\vec{b} - \vec{s}_2)^2, ..., (\vec{b} - \vec{s}_A)^2)$ does not depend on z_i $(1 \le j \le A)$ which means $\hat{O}_z \Gamma \hat{O}_z = \Gamma$, then $\langle \epsilon_f, P, J, M | \Gamma | \epsilon_i, 0^+ \rangle = \langle \epsilon_f, P, J, M | \hat{O}_z \Gamma \hat{O}_z | \epsilon_i, 0^+ \rangle =$ $= P(-1)^M \langle \epsilon_f, P, J, M | \Gamma | \epsilon_i, 0^+ \rangle.$

Therefore the matrix element of profile function and amplitude $F_M(q)$ is nonzero if $P(-1)^M = 1$.

S.I. Manaenkov, HEPD Scientific Council, Gatchina, 2022, December 22 p. 12 of 15 p. 12 of 15

Back-Up Slides

• Proof of Relations $F_{-M}(q) = (-1)^J F_M(q)$

Let us choose the X-axis parallel to \vec{q} . Rotation $R_x(\pi)$ around the X-axis

by the angle $\varphi = \pi$ gives $x_j \to x_j$, $y_j \to -y_j$, $z_j \to -z_j$, $b_x \to b_x$, $b_y \to -b_y$.

Since the profile function Γ depends only on $(b_x - x_j)^2 + (b_y - y_j)^2$ $(1 \le j \le A)$ it is invariant under rotation $R_x(\pi)$, $(\vec{q} \cdot \vec{b}) = qb_x$ is also invariant.

The group of profile function invariance is C_{2v} .

Nuclear wave functions are transformed as $\hat{R}_x(\pi)|\epsilon_f, P, J, M\rangle = (-1)^J |\epsilon_f, P, J, -M\rangle$, $\hat{R}_x(\pi)|\epsilon_i, 0^+\rangle = |\epsilon_i, 0^+\rangle$. Relation for amplitudes:

$$\begin{split} F_{M} &= \langle \epsilon_{f}, P, J, M | \left(\frac{ik}{2\pi} \int e^{i(\vec{q} \cdot \vec{b})} \Gamma d^{2}b \right) | \epsilon_{i}, 0^{+} \rangle = \\ &= \langle \epsilon_{f}, P, J, M | R_{x}(\pi) \left(\frac{ik}{2\pi} \int e^{i(\vec{q} \cdot \vec{b})} \Gamma d^{2}b \right) R_{x}(\pi) | \epsilon_{i}, 0^{+} \rangle = \\ &= \langle \epsilon_{f}, P, J, -M | (-1)^{J} \left(\frac{ik}{2\pi} \int e^{i(\vec{q} \cdot \vec{b})} \Gamma d^{2}b \right) | \epsilon_{i}, 0^{+} \rangle = (-1)^{J} F_{-M} \\ \text{Therefore } F_{-M}(q) = (-1)^{J} F_{M}(q). \end{split}$$

• Transverse and longitudinal distances

• Energy Levels of ${}^{16}\text{O}$

Рис. 4. Схема нижних уровней ядра О¹⁶