Feasibility study for reaction $\left(p, p^{\prime} \gamma\right)$ at Gatchina accelerator

S.I. Manaenkov
 HEPD Scientific Council Gatchina, 2022, December 22

Contents

- Introduction
- Properties of Nucleus-Excitation Amplitudes in Glauber Theory
- Photon Radiation with Excited Nuclei
- Contributions of Spin-Dependent Parts of Hadron-Nucleon Amplitude
- Angular Distribution of Gamma-Quanta
- Experiments with γ-Quanta in the Last Century
- Summary

Introduction

- Registration of gamma-quantum energy fixes the nucleus energy level with better accuracy than the magnetic spectrometer
- Study of the differential cross section at $t \rightarrow 0$ permits to establish the parity P of a natural parity level
- Investigation of the gamma-quantum angular distribution in coincidence with the scattered hadron allows to extract the Glauber amplitudes of nucleus excitation $F_{M}(q)$ and establish level's quantum numbers $J^{P}\left(M=J_{z}\right)$
- Knowledge of the amplitudes of nuclear level excitation offers a clearer understanding of nuclear structure than that of differential cross sections
- Measurements of γ-quantum energy spectrum permits to investigate also reactions ${ }^{A} X(p, p p)^{(A-1)} Y^{*},{ }^{A} X(p, p n)^{A} X^{*}$ and ${ }^{A} X(p, p \alpha)^{(A-4)} Z^{*}$ with excited nuclei X^{*}, Y^{*}, Z^{*} in the final state

Properties of Nucleus-Excitation Amplitudes in Glauber Theory

- Selection Rules for Nuclei with Ground State $J^{P}=0^{+}$

If the hadron-nucleon spin-dependent invariant amplitudes are much smaller than spin-independent amplitude, than the states J^{P} are exited with $M=J_{z}$ obeying the relation

$$
P(-1)^{M}=1
$$

Examples. Natural parity level $3^{-}: M= \pm 3, \pm 1$.
Unnatural parity level $3^{+}: M= \pm 2,0$. Natural parity level $2^{+}: M= \pm 2,0$.
Even (odd) values of M correponds to $P=1(P=-1)$.

- Relation between $F_{M}(q)$ and $F_{-M}(q): F_{-M}(q)=(-1)^{J} F_{M}(q)$

Examples. Unnatural parity level $3^{+}: F_{-2}(q)=-F_{2}(q)$,
$F_{-0}(q)=(-1)^{3} F_{0}(q) \Rightarrow F_{0}(q) \equiv 0$. It is general property of unnatural parity levels. Natural parity level $2^{+}: F_{-0}(q)=(-1)^{2} F_{0}(q), F_{0}(q) \neq 0$.

- Asymptotic Behavier of Amplitudes $F_{M}(q)$ at $q R \rightarrow 0: F_{M}(q) \sim(q R)^{|M|}$.

Examples. For 3^{-}level main terms: $F_{ \pm 1}(q) \sim(q R)^{1}$.
For 2^{+}level main term: $F_{0}(q) \sim(q R)^{0}=$ const.
For 3^{+}level main terms: $F_{ \pm 2}(q) \sim(q R)^{2}$.
1^{+}level is not excited at high energies at all by spin-independent hadron-nucleon amplitudes since $F_{0}(q) \equiv 0$.

Photon Radiation with Excited Nuclei

- State of photon is described by vector spherical harmonics $\vec{Y}_{J M}^{(\lambda)}$ $\lambda=1$ electric type (E) or $\lambda=0$ magnetic type $(M) . \vec{Y}_{J M_{1}}^{(1)} \cdot \vec{Y}_{J M_{2}}^{*(1)}=\vec{Y}_{J M_{1}}^{(0)} \cdot \vec{Y}_{J M_{2}}^{*(0)}$ For transition $J^{P} \rightarrow 0^{+} \lambda=1$ (electric type E), if $P=(-1)^{J}$ (natural parity level), while $\lambda=0$ (magnetic type M), if $P=-(-1)^{J}$ (unnatural parity level).
- Angular distribution of photons emitted in the transition $J^{P} \rightarrow 0^{+}$

$$
\mathcal{W}(\theta, \varphi, \vec{q})=|\overrightarrow{\mathcal{F}}|^{2}=\left|\sum_{M} F_{M}(q) \vec{Y}_{J M}^{(\lambda)}(\theta, \varphi)\right|^{2}=\sum \varrho_{M_{1} M_{2}} \vec{Y}_{J M_{1}}^{(\lambda)}(\theta, \varphi) \cdot \vec{Y}_{J M_{2}}^{*(\lambda)}(\theta, \varphi)
$$

where θ is polar and φ is azimuthal angle of photon momentum
(Z-axis is along beam, X-axis is parallel to \vec{q}). $\vec{Y}_{J M}^{(\lambda)}(\theta, \varphi)=e^{i M \varphi} \vec{\xi}_{J M}^{(\lambda)}(\theta)$.
Example: $3^{-} \rightarrow 0^{+} . F_{-3}(\vec{q})=-F_{3}(\vec{q}), F_{-1}(\vec{q})=-F_{1}(\vec{q})$,
$\overrightarrow{\mathcal{F}}(\theta, \varphi, \vec{q})=F_{3}(\vec{q})\left(\vec{Y}_{33}^{(E)}(\theta, \varphi)-\vec{Y}_{3-3}^{(E)}(\theta, \varphi)\right)+F_{1}(\vec{q})\left(\vec{Y}_{31}^{(E)}(\theta, \varphi)-\vec{Y}_{3-1}^{(E)}(\theta, \varphi)\right)$.
Two complex amplitudes $F_{3}(q)$ and $F_{1}(q) \equiv 4$ real function of q.
Common phase is unmeasurable, hence 3 function of q can be extracted from data.

- Which information contain amplitudes $F_{M}(q)$ at $q R \rightarrow 0$?
$\left.F_{M}(q)=i^{M+1} k \int_{0}^{\infty} J_{M}(q b)\left\langle\left\langle\epsilon_{f}, P, J, M\right| \Gamma\left(\vec{b}-\vec{s}_{1}, \vec{b}-\vec{s}_{2}, \ldots, \vec{b}-\vec{s}_{A}\right) \mid \epsilon_{i}, 0^{+}\right\rangle\right\rangle b d b$, where \vec{s}_{j} is transverse part of radius-vector \vec{r}_{j} of j-th nucleon in nucleus $(1 \leq j \leq A)$, while \vec{b} is impact vector of beam hadron.
Bessel functions $J_{M}(q b) \sim(q b)^{|M|}$ at $q \rightarrow 0$.
The larger $|M|$ the more peripherical is contribution to $F_{M}(q)$ at small q.

Contributions of Spin-Dependent Parts of Hadron-Nucleon Amplitude

- Pion-nucleon amplitude: $f(\vec{q})=a\left(q^{2}\right)+b\left(q^{2}\right)(\vec{\sigma} \cdot \vec{n})$,
where $\vec{n} \propto(\vec{k} \times \vec{q})$ is the unit normal to the hadron-nucleon scattering plane. $F_{M}(q)=F_{M}^{(a)}(q)+F_{M}^{(b, a)}(q)$. Linear contributions of πN-amplitude $b\left(q^{2}\right)$ to $F_{M}^{(b, a)}$. Selection rules for $F_{M}^{(b, a)}(q): P(-1)^{M}=-1$.
Relations between $F_{M}^{(b, a)}(q)$ and $F_{-M}^{(b, a)}(q): F_{-M}^{(b, a)}(q)=-(-1)^{J} F_{M}^{(b, a)}(q)$.
Since different $F_{M}(q)$ are multiplied by different vector spherical harmonics $\vec{Y}_{J M}^{(X)}$ all amplitude moduli and phase differences of $F_{M}(q)$ can be extracted from data, besides the common phase shift of the amplitudes retains unknown.
- Example: $J^{P}=3^{-}$. Nonzero $F_{M}^{(b, a)}(q)$ for $M=0, \pm 2$.
$F_{-2}^{(b, a)}(q)=F_{2}^{(b, a)}(q), F_{0}^{(b, a)}(q) \neq 0$.
Big amplitudes $F_{3}^{(a)}(q), F_{1}^{(a)}(q)$; small amplitudes $F_{2}^{(b, a)}(q), F_{0}^{(b, a)}(q)$.
Common phase is unmeasurable, hence 7 function of q can be extracted from data.
- Types of extracted form factors for pion scattering in impulse approximation
$F_{M}^{(a)}(q): A_{M}(q)=\left\langle\epsilon_{f}, P, J, M\right| \sum_{j=1}^{A} \exp \left\{i\left(\vec{q} \cdot \vec{r}_{j}\right)\right\}\left|\epsilon_{i}, 0^{+}\right\rangle$.
$F_{M}^{(b, a)}(q): B_{M}(q)=\left\langle\epsilon_{f}, P, J, M\right| \sum_{j=1}^{A}\left(\vec{\sigma}_{j} \cdot \vec{n}\right) \exp \left\{i\left(\vec{q} \cdot \vec{r}_{j}\right)\right\}\left|\epsilon_{i}, 0^{+}\right\rangle, \vec{n} \propto(\vec{k} \times \vec{q})$.

Angular Distribution of Gammma-Quanta

- Gamma-Quanta from Transition $2^{+} \rightarrow 0^{+}$

Solid line $-\left|\vec{Y}_{22}^{(1)}\right|^{2}$, dashed line $-\left|\vec{Y}_{21}^{(1)}\right|^{2}$, dotted line $-\left|\vec{Y}_{20}^{(1)}\right|^{2}$.

Angular Distribution of Gammma-Quanta

- Gamma-Quanta from Transition $2^{+} \rightarrow 0^{+}$

Solid line: $X=\left(\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{21}^{*(1)}\right)(\varphi=0)$, dashed line: $X=\left(\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{20}^{*(1)}\right)(\varphi=0)$, dotted line: $X=\left(\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{2-1}^{*(1)}\right)(\varphi=0)$, dash-dotted line: $X=\left(\vec{Y}_{22}^{(1)} \cdot \vec{Y}_{2-2}^{*(1)}\right)(\varphi=0)$.

Experiments with γ-Quanta in the Last Century

- Excitation of $3^{-}(6,13 \mathrm{MeV})$ level in ${ }^{16} \mathrm{O}$ by protons; $\Delta E_{\gamma}(\mathrm{Ge}(\mathrm{Li}))=10 \div 15 \mathrm{KeV}$ Yu.M. Goryachev, V.P. Kanavets, I.V. Kirpichnikov, I.I. Levintov, B.V. Morozov, N.A. Nikiforov, A.S. Starostin (ITEP group), Excitation of nuclear levels in O^{16} with high energy protons, Phys. of Atom. Nucl. (Yad. Fiz.) 17 (1973) 910.

Beam energy (GeV)	σ^{*}, mb
1,0	$7,3 \pm 1,1$
2,9	$8,5 \pm 1,4$
6,3	$7,8 \pm 1,3$

- Radiation of γ-quanta with nuclei excited by high-energy hadrons
S. I. Manaenkov, Emission of γ-quanta with nuclei excited with high energy hadrons, JETP Letters 18 (1973) 535-538.
S. I. Manaenkov, Excitation of individual levels in ${ }^{16} \mathrm{O}$ with protons at energy 1 GeV, JETP Letters 19 (1974) 593-597.
S. I. Manaenkov: γ-radiation of nuclei excited with high energy hadrons, Yad. Fiz. 20 (1974) 677-689.
S. I. Manaenkov: Study of NN amplitude in nucleon-nucleus scattering experiments at high energies, Yad. Fiz. 26 (1977) 302-311.

Experiments with γ-Quanta in the Last Century

- γ-Quantum Spectrum of ${ }^{16} \mathrm{O}$ Excited with the 1 GeV Protons

Рис. 2. Спеютр γ-пзлучения, испускаемого LiOH мишепью при облучении протопами с энергией $T_{p}=1$ Гэв. Угол наблюдепия 178° по отношепию к протонному пучку. Энергетическая цена канала анализатора $\Delta E=20$ кэв

Experiments with γ-Quanta in the Last Century

- J.L. Groves, L.E. Holloway, L.J. Koester, W.-K. Liu, L.J. Nodulman, D.G. Ravenhall, J.H. Smith (Illinois Univ.), Study of the reaction $\pi^{-}+{ }^{12} C \rightarrow \pi^{-}+{ }^{12} C^{*}$ (4.44 MeV) at 4.5 GeV/c. Phys. Rev. D15 (1977), 47. $\sigma^{*}=1.70 \pm 0.23 \mathrm{mb}$.

Summary

- Study of reaction $\left(p, p^{\prime} \gamma\right)$ permits to extract from experimental data on nucleus excitation with intermediate energy hadron beam all moduli of amplitudes $F_{M}(q)$ and phase difference between all pairs of amplitudes. The ground state of target nucleus is to be non-degenerate energy level $\left(0^{+}\right.$or $\left.0^{-}\right)$.
- Angular distribution of photons from transition $J^{P} \rightarrow 0^{+}$or $J^{P} \rightarrow 0^{-}$fixes the total angular momentum of excited level and its parity.
- Behaviour of amplitudes $F_{M}(\mathrm{q})$ at $q \rightarrow 0$ allows to establish the excited level parity.
- Spin-dependent πN amplitude contributes in linear approximation to amplitudes of nucleus excitation $F_{M}(q)$ for M different from those which are excited with spin-independent πN amplitude.
- Extracted Information from Hadron-Nucleus Scattering Data

For the pion scattering two types of form factors can be extracted:
$A_{M}(q)=\left\langle\epsilon_{f}, P, J, M\right| \sum_{j=1}^{A} \exp \left\{i\left(\vec{q} \cdot \vec{r}_{j}\right)\right\}\left|\epsilon_{i}, 0^{+}\right\rangle$,
$B_{M}(q)=\left\langle\epsilon_{f}, P, J, M\right| \sum_{j=1}^{A}\left(\vec{\sigma}_{j} \cdot \vec{n}\right) \exp \left\{i\left(\vec{q} \cdot \vec{r}_{j}\right)\right\}\left|\epsilon_{i}, 0^{+}\right\rangle$.
For proton beam in addition to $A_{M}(q)$ three form factors can be obtained:
$B_{M}^{(m)}(q)=\left\langle\epsilon_{f}, P, J, M\right| \sum_{j=1}^{A}\left(\vec{\sigma}_{j}\right)_{m} \exp \left\{i\left(\vec{q} \cdot \vec{r}_{j}\right)\right\}\left|\epsilon_{i}, 0^{+}\right\rangle$, where $m=x, y, z$.
This gives possibility to test nucleus models more detailed than in lepton scattering, besides long-range correlations (deformation, alpha-clusterization) can be studied.

Back-Up Slides

- Proof of Selection Rules
\hat{O}_{z} is reflection of the Z-axis $\left(z_{j} \rightarrow-z_{j}\right)$. Since $\hat{O}_{z}=\hat{P} \hat{R}_{z}(\pi)$, where \hat{P} is inversion and $\hat{R}_{z}(\pi)$ is rotation around Z-axis by the angle $\varphi=\pi$, then $\hat{R}_{z}(\pi)\left|\epsilon_{f}, P, J, M\right\rangle=(-1)^{M}\left|\epsilon_{f}, P, J, M\right\rangle$ and $\hat{P}\left|\epsilon_{f}, P, J, M\right\rangle=P\left|\epsilon_{f}, P, J, M\right\rangle$, therefore $\hat{O}_{z}\left|\epsilon_{f}, P, J, M\right\rangle=P(-1)^{M}\left|\epsilon_{f}, P, J, M\right\rangle$, and $\hat{O}_{z}\left|\epsilon_{i}, 0^{+}\right\rangle=\left|\epsilon_{i}, 0^{+}\right\rangle$.

Since the profile function $\Gamma=\Gamma\left(\left(\vec{b}-\vec{s}_{1}\right)^{2},\left(\vec{b}-\vec{s}_{2}\right)^{2}, \ldots,\left(\vec{b}-\vec{s}_{A}\right)^{2}\right)$
does not depend on $z_{j}(1 \leq j \leq A)$ which means $\hat{O}_{z} \Gamma \hat{O}_{z}=\Gamma$, then
$\left\langle\epsilon_{f}, P, J, M\right| \Gamma\left|\epsilon_{i}, 0^{+}\right\rangle=\left\langle\epsilon_{f}, P, J, M\right| \hat{O}_{z} \Gamma \hat{O}_{z}\left|\epsilon_{i}, 0^{+}\right\rangle=$
$=P(-1)^{M}\left\langle\epsilon_{f}, P, J, M\right| \Gamma\left|\epsilon_{i}, 0^{+}\right\rangle$.
Therefore the matrix element of profile function and amplitude $F_{M}(q)$ is nonzero if $P(-1)^{M}=1$.

Back-Up Slides

- Proof of Relations $F_{-M}(q)=(-1)^{J} F_{M}(q)$

Let us choose the X-axis parallel to \vec{q}. Rotation $R_{x}(\pi)$ around the X-axis by the angle $\varphi=\pi$ gives $x_{j} \rightarrow x_{j}, y_{j} \rightarrow-y_{j}, z_{j} \rightarrow-z_{j}, b_{x} \rightarrow b_{x}, b_{y} \rightarrow-b_{y}$.
Since the profile function Γ depends only on $\left(b_{x}-x_{j}\right)^{2}+\left(b_{y}-y_{j}\right)^{2}(1 \leq j \leq A)$ it is invariant under rotation $R_{x}(\pi),(\vec{q} \cdot \vec{b})=q b_{x}$ is also invariant.
The group of profile function invariance is $C_{2 v}$.
Nuclear wave functions are transformed as

$$
\hat{R}_{x}(\pi)\left|\epsilon_{f}, P, J, M\right\rangle=(-1)^{J}\left|\epsilon_{f}, P, J,-M\right\rangle, \hat{R}_{x}(\pi)\left|\epsilon_{i}, 0^{+}\right\rangle=\left|\epsilon_{i}, 0^{+}\right\rangle
$$

Relation for amplitudes:

$$
\begin{aligned}
& F_{M}=\left\langle\epsilon_{f}, P, J, M\right|\left(\frac{i k}{2 \pi} \int e^{i(\vec{q} \cdot \vec{b})} \Gamma d^{2} b\right)\left|\epsilon_{i}, 0^{+}\right\rangle= \\
& =\left\langle\epsilon_{f}, P, J, M\right| R_{x}(\pi)\left(\frac{i k}{2 \pi} \int e^{i(\vec{q} \cdot \vec{b})} \Gamma d^{2} b\right) R_{x}(\pi)\left|\epsilon_{i}, 0^{+}\right\rangle= \\
& =\left\langle\epsilon_{f}, P, J,-M\right|(-1)^{J}\left(\frac{i k}{2 \pi} \int e^{i(\vec{q} \cdot \vec{b})} \Gamma d^{2} b\right)\left|\epsilon_{i}, 0^{+}\right\rangle=(-1)^{J} F_{-M}
\end{aligned}
$$

Therefore $F_{-M}(q)=(-1)^{J} F_{M}(q)$.

Back-Up Slides

- Transverse and longitudinal distances

Back-Up Slides

- Energy Levels of ${ }^{16} \mathrm{O}$

Pис. 4. Схема нидних уровней
ядра 0^{16}

