

Детекторы тепловых нейтронов

ПЕРВАЯ премия

на конкурсе

«Лучшие работы ПИЯ 2009года»

за работу

«Разработка и создание двухкоординатного детектора тепловых нейтронов»

Авторский коллектив

<u>А. Г. Крившич</u>, В. А. Андреев, Д. С. Ильин, Е. А. Иванов, С. Н. Коваленко, Г. Д. Шабанов А. В. Надточий, В. В. Рунов, В. А. Соловей, М. Р. Колхидашвили, Г. А. Ганжа

> Активная поддержка работы А.И.Окороков, В.В.Федоров, А.А.Воробьев

Рабочие экземпляры детекторов тепловых нейтронов

Регистрация тепловых нейтронов

Герметичность детекторов и чистота рабочей смеси

Все электроды изготовлены из кварцевого стекла

Применена технология изготовления электродов из кварцевого стекла

Собранный пакет электродов

<u>Стабильность характеристик</u> <u>детектора:</u>

- 1. Минимальные утечки рабочей смеси (падение давления – менее 3% в год)
- 2. Минимальное газовыделение материалов детектора в его рабочий объем

Регистрирующая

электроника

4-х канальный TDC

позволяет работать с интегральными загрузками до 2×10⁵ 1/сек.

Амплитудные спектры

<u>Счетные характеристики</u>

Детектор работает очень надежно:

- Плато по аноду 3400-2800=<mark>600В</mark>;
- Плато по дрейфовому промежутку 6000-1500=4500B
- Микро-пробоев и резкого роста шумов в конце плато HET.

Рассеяние тепловых нейтронов на образцах

Мембрана-2 (многосчетчиковая система): пленки силоксана O_xC_ySi_z с различными добавками фуллерена C_α

Мембрана-2 с ПЧД 200×200: расстояние до детектора L=253 см. Характерный размер D=2π/q=28 нм.

Фторопласт (Teflon), расстояние до детектора 10 см. Характерный размер решетки D=2π/q=0.56 нм.

Растянутая пленка фторопласта: деформация решетки в выделенном направлении F.

Двухкоординатные спектры

На рис. - изображение, полученное при облучении рассеянным пучком нейтронов (²⁵²Cf) пластины кадмия с аббревиатурой "PNPI".

Совместными усилиями двух Отделений (ОНИ и ОФВЭ) в институте создан двухкоординатный детектор тепловых нейтронов, который является законченным прибором и он начал применяться в реальных физических экспериментах

Стратегия развития детекторов тепловых нейтронов в ПИЯФ

Двухкоординатный монитор пучка:

- высокая трансмиссия нейтронов (95-98%),
- возможность работы при высоких интенсивностях пучка (I>10⁵ н/см2 с),
- пространственное разрешение 3-4 мм

Конструкции детектора

Типы детекторов нейтронов, которые планируются к применению в различных экспериментальных установках реактора ПИК

		Пропорциона льные счетчики	Газонаполненные 2D-детекторы	Сцинтиллятор ы	ппд
1	Порошковые дифрактометры	3			
2	Кристаллические дифрактометры		6		
3	Спектрометры неупругого рассеяния		3	3	
4	Малоугловые инструменты		10		
5	Прочие установки		2		1
	ИТОГО	3	21	3	1

Аппертура	Пространственное разрешение, мм	Количество
100×100	2	1
200×200	2	3
250×250	2	2
300×300	2	8
400×400	4	1
500×500	4	3
1000×1000	8	2
	ИТОГО	21

Детекторы нейтронов из GKSS

Сверху – детектор для малоугловых измерений (с буферным объемом).

Справа – детектор для работы на больших углах рассеяния (с дополнительным вакуумным объемом).

Метод съема информации –

Charge division.

Пространственное разрешение - 8мм.

Разработка технологии детекторов нейтронов с аппертурой до 100×100см. Возможность работы детектора в вакууме.

Увеличение загрузочной способности детекторов с 1×10⁵ 1/сек до 1×10⁶ 1/сек Ограничение по скорости счета для детекторов с линией задержки: "multi-hit events" невозможно для данного типа read-out. Если, например, длина линии задержки для REFSANS-Detector: Δt_d = 423 ns Тогда для имеющегося read-out это и будет временной интервал между сигналами для одного события $\Delta t = \Delta t_d$ Максимальная загрузка составит $I_{g_{max}} \ll 1/\Delta t_d$ Для REFSANS-Detector: $I_{gmax} \sim 1/423$ ns = 2.3 10° /s или $I_{gmax} \sim 10^5$ /s Для того, чтобы достигнуть $I_{a_{max}} \sim 10^6$ /s система регистрации и детектор должны регистрировать более, чем одно событие внутри интервала $\Delta t = \Delta t_d$

Перспективные разработки

5. Начинаются работы по исследованию иных конверторов (10В):

 $n + {}^{\circ}B \rightarrow {}^{7}Li^{*} + \alpha \rightarrow {}^{7}Li (0.83 \text{ M}3B) + \alpha (1.47 \text{ M}3B) + \gamma (0.48 \text{ M}3B)$ (93%) $\rightarrow {}^{7}Li (1.0 \text{ M}3B) + \alpha (1.8 \text{ M}3B)$ (7%)

- 6. Газонаполненные детекторы с твердотельными конверторами (гибриды).
- 7. Газонаполненные детекторы на базе GEMob.
- 8. Твердотельные детекторы.

Заключение

1. ПИЯ фрасполагает технологией создания двух-координатных детекторов тепловых нейтронов. Разработана придетекторная и регистрирующая электроника с высокими функциональными параметрами.

2. На основе этих разработок были созданы и успешно испытаны <u>детекторные системы</u> с апертурой входного окна 200*200мм и 300*300мм.

3. В течении 2011года ПИЯФ получит комплекс малоугловых установок из GKSS (Германия) оснащенных детекторными системами с аппертурой 500мм, что позволит в кратчайшие сроки установить и запустить их на пучках реактора ПИК

4. На основании полученного нами опыта и знаний:

4.1. Мы ведем модернизацию существующих детекторов.

4.3. Прорабатываем перспективные направления развития новых технологий и новых типов детекторов нейтронов.

ПовышениеЭффективность детекторов нейтронов в диапазоне 0,4÷10Å

Detection probability SANS-2 detector: > 50 % for 0,5nm < λ < 1.8 nm; max.: ~60 **REFSANS detector:** > 60 % for 0,3 nm < λ < 3.5 nm; max.:

~ 2 0 0/