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Abstract—The rising the role of artificial neural networks (ANN) as part of machine learning/deep learning
(ML/DL) in high energy physics (HEP) and related areas can be seen last decade. Several reasons for rising
the role of ANN were observed. It is paid attention to specific topics: learning transfer, distributed learning,
ensemble of ANN. A lot of new experimental data will come from existing and new complex data taking sys-
tems in coming years, which will require advanced analysis with ANN running on appropriate computing
hardware. Finally, the idea of future ANN development directions for HEP and related areas has been sup-
posed.
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THE RISING OF ANN IN HEP
ANN is the specific type of machine learning algo-

rithms that is inspired by the structure and function of
the human brain. ANN consists of a number of layers
of interconnected nodes (neurons) that process and
transfer the data. Each neuron receives input from
other neurons in different layer and applies a mathe-
matical function (so called activation function) to that
input in order to produce the output. ANN is part of
more general approach machine learning (ML) which
in turn is part of Artificial Intelligence1 (AI) or Artifi-
cial General Intelligence2 (AGI). ANNs are in use in
high energy physics many decades [2–4]. Last ten or
so years great progress was seen in ANN field due to
several reasons:

• Grow of availability of the distributed computing
facility and experimental data storages [5–7].

• Many new inventions were introduced thanks to
the competitions in between developers [8–10] and
presentations in many conferences resulted in the new
advanced ANN architectures [11–13].

• General progress with Artificial Intelligence
developments [14].

• Creating several ANN specific hardware acceler-
ators and cloud facilities [15].

• Grow the availability of open-source neural net-
work frameworks such as TensorFlow, PyTorch,

Keras, etc has lowered the barrier to entry for develop-
ers and researchers who want to experiment with and
develop neural networks. This has led to a democrati-
zation of the technology and contributed to its wide-
spread adoption [16].

• Faster obtain the inferences with appropriately
trained ANN in comparison to other methods.

PROBABLE FUTURE OF THE ANN 
DEVELOPMENTS FOR HEP

Common trend in the data access is becoming
more and more open. Known examples are Transform
to Open Science (TOPS)3, Zenodo4 and similar initia-
tives [17]. The same can be watched in ANN e.g.
FAIR4HEP5 collaboration. By 2025 USA will intro-
duce common open access rules for all scientific data
obtained with government support. Similar move-
ments take place in Europe and China [18]. The
importance of open access to the experimental data is
deeply discussed in [19] together with physics thoughts
of the importance to pay attention for variety of com-
plex datasets, with ongoing and upcoming sources of
experimental data such as Gaia [20], Large-aperture
Synoptic Survey Telescope [21], Laser Interferometer
Gravitational-Wave Observatory [22], and the Square

1 https://en.wikipedia.org/wiki/Artificial_intelligence.
2 https://en.wikipedia.org/wiki/Artificial_general_intelligence.

3 https://science.nasa.gov/open-science/transform-to-open-sci-
ence.

4 https://zenodo.org/.
5 https://fair4hep.github.io/.
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Kilometer Array [23] in addition to Large Hadron
Collider (LHC)6. It is important to share known prin-
ciples about open datasets: Findable, Accessible,
Interoperable, Reusable [24–26]. In this context it is
useful to pay attention to distributed ANN (ensemble
of ANN) like federated learning together with federated
transfer learning [27–31] which might become attrac-
tive for distributed experimental data around the phys-
ics laboratories. One of the first attempt to use feder-
ated learning in HEP was described in [32]. A number
of technical issues (data transfer, security, etc) of dis-
tributed ANN might be solved for example with exist-
ing WLCG infrastructures and additional tools, e.g.
funcX [33].

Until now there are many examples really huge
Artificial Intelligence (AI) models/installations, e.g.
GPT-3/4 [34–37], LLaMA [38] and the like. Such the
models mentioned in as Foundation Models are dis-
cussed at [39] in light of real advantages and probable
risks of wide use. Now may be more interesting to
develop special foundation model dedicated for physics
problems. During the development it must be
observed a lot of thoughts like physics itself [40],
tradeoffs “precise power-law scalings for performance
as a function of training time, context length, dataset
size, model size, and compute budget” [41, 42], and rules
of ANN explainability [44]. Physics foundation model
might be implemented on advanced hardware architec-
tures taking into account known examples like Meta’s AI
Research SuperCluster (RSC) supercluster [43],
Argonne Leadership Computing Facility (ALCF) AI
Testbed [45], SambaNova [46], Cerebras [47]. The
suggested foundation model dedicated to physics
together with open access to the datasets around the
scientific world deliver hope to discover new unknown
physics phenomena. Total volume of the labor for
future proposal for development of physics foundation
model may in scale like WLCG or so.

ANN for large systems: a large volume of docu-
mentation (technical descriptions, administrative
orders, operating manuals, etc), as well as a volume of
automatic and semi-automatic log records about the
functioning of the entire system. A meaningful analy-
sis (obtaining an answer to a specific question based on
all available data) of such a large amount of data (hun-
dreds GB/TB or more) is a non-trivial task, which in
many cases turns out to be labor- and time-consum-
ing. As possible solution to mitigate above difficulties
is to undertake the development of a special expert sys-
tem (SES) using ANN technology, which could pro-
vide the operator (system administrator) with effective
assistance in the described task. Most interesting
implementation of such the system would be the kind
of interaction in between the operator and the system
by natural language [48] where answers from the sys-

6 Large Hadron Collider https://en.wikipedia.org/
wiki/Large_Hadron_Collider.
PHYSICS O
tem might be the recommendations what the operator
have to do next.

CONCLUSIONS

Several directions of future ANN developments
can be expected: distributed ANN ensembles, founda-
tion models dedicated to physics, special expert sys-
tems based on ANN technology to help maintain the
large installations (computing installations, data tak-
ing, etc).

It seems quite possible synergetic effects in several
aspects of ANN application in HEP and related areas:

• large scale distributed ANNs which might be used
by many physicists around the World to examine scien-
tific assumptions and create new physics theories;

• involving the existing experimental data around
the World into analysis and attention of many scien-
tists and may be commercial companies who already
have significant experience in ANN and in general
machine learning;

• special expert systems based on ANN would be
probable part of any large installation (detectors, com-
puting infrastructures, etc).
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