Leading twist model of nuclear shadowing: Nuclear diffractive PDFs

Leading twist model of nuclear shadowing

L. Frankfurt, V. Guzey and M. Strikman, Phys. Rept. 512 (2012) 255 [arXiv:1106.2091 [hep-ph]]
V. Guzey and M. Strikman, Phys. Lett. B 687, 167 (2010)
L. Frankfurt, V. Guzey and M. Strikman, Phys. Rev. D 71, 054001 (2005)
L. Frankfurt and M. Strikman, Eur. Phys. J. A 5, 293 (1999)

      Last checked: Dec 2017

Overview of the formalism

Predictions for nPDFs

Predictions for impact parameter dependent nPDFs

Nuclear diffractive PDFs





Back to V. Guzey at PNPI

Nuclear diffractive PDFs

The leading twist model of nuclear shadowing predicts next-to-leading order (NLO) nuclear diffractive parton distributions fj/AD(3)(xP,Q2,&beta) and nuclear diffractive structure functions F2AD(3)(xP,Q2,β) for 10-4 ≤ xP ≤ 0.1, 4 ≤ Q2 ≤ 16,000 GeV2, and 0.01 ≤ β ≤ 1.
Fortran codes and required data files with grids for nuclear diffractive PDFs and structure functions can be found at the bottom of this page.

Predictions for nuclear shadowing for nuclear diffractive PDFs are obtained by generalizing our results for the ususual nPDFs. The master equation for nuclear diffractive PDFs reads:

Formula for diff PDFs

An example of our predictions is presented below, where we plot the ratio of the nuclear to nucleon diffractive PDFs, fj/AD(3)/(Afj/ND(3)), as a function of β and xP at fixed input Q02=4 GeV2.

Diffraction_beta Diffraction_xpom

For convenience, we performed the DGLAP evolution and tabulated our results as three-dimensional grids in xP, Q2, and β. Using a simple Fortran code, one can interpolate between the grid points and thus obtain the following ratios of NLO quantities: fj/AD(3)/(Afj/ND(3)), F2AD(3)/(AF2ND(3)), fj/AD(3)/A, and F2AD(3)/A at any desired xP, Q2, and β in the interval 10-4 ≤ xP ≤ 0.1, 4 ≤ Q2 ≤ 16,000 GeV2, and 0.01 ≤ β ≤ 1.
The tables below contain the data files with grids and the Fortran codes for the interpolation: the first set is for the ratios of the nuclear to free nucleons PDFs, fj/AD(3)/(Afj/ND(3)) and F2AD(3)/(AF2ND(3));
the second set is for the absolute values divided by A, fj/AD(3)/A and F2AD(3)/A.

Fortran codes and grids for fj/AD(3)/(Afj/ND(3)) and F2AD(3)/(AF2ND(3))

Nucleus Model 1 Model 2
C-12 Fortran code LT2009_c12proton_diffraction_model1.f
Grid QCDEvolution_diffraction_c12p_model1_Jul10.dat
Fortran code LT2009_c12proton_diffraction_model2.f
Grid QCDEvolution_diffraction_c12p_model2_Jul10.dat
Ca-40 Fortran code LT2009_ca40proton_diffraction_model1.f
Grid QCDEvolution_diffraction_ca40p_model1_Jul10.dat
Fortran code LT2009_ca40proton_diffraction_model2.f
Grid QCDEvolution_diffraction_ca40p_model2_Jul10.dat
Pd-110 Fortran code LT2009_pd110proton_diffraction_model1.f
Grid QCDEvolution_diffraction_pd110p_model1_Jul10.dat
Fortran code LT2009_pd110proton_diffraction_model2.f
Grid QCDEvolution_diffraction_pd110p_model2_Jul10.dat
Pb-208Fortran code LT2009_pb208proton_diffraction_model1.f
Grid QCDEvolution_diffraction_pb208p_model1_Jul10.dat
Fortran code LT2009_pb208proton_diffraction_model2.f
Grid QCDEvolution_diffraction_pb208p_model2_Jul10.dat

Fortran codes and grids for fj/AD(3)/A and F2AD(3)/A

Nucleus Model 1 Model 2
C-12 Fortran code LT2009_c12_diffraction_model1.f
Grid QCDEvolution_diffraction_c12_model1_Jul10.dat
Fortran code LT2009_c12_diffraction_model2.f
Grid QCDEvolution_diffraction_c12_model2_Jul10.dat
Ca-40 Fortran code LT2009_ca40_diffraction_model1.f
Grid QCDEvolution_diffraction_ca40_model1_Jul10.dat
Fortran code LT2009_ca40_diffraction_model2.f
Grid QCDEvolution_diffraction_ca40_model2_Jul10.dat
Pd-110 Fortran code LT2009_pd110_diffraction_model1.f
Grid QCDEvolution_diffraction_pd110_model1_Jul10.dat
Fortran code LT2009_pd110_diffraction_model2.f
Grid QCDEvolution_diffraction_pd110_model2_Jul10.dat
Pb-208Fortran code LT2009_pb208_diffraction_model1.f
Grid QCDEvolution_diffraction_pb208_model1_Jul10.dat
Fortran code LT2009_pb208_diffraction_model2.f
Grid QCDEvolution_diffraction_pb208_model2_Jul10.dat